Uka Tarsadia University (Diwaliba Polytechnic) Diploma in Chemical Engineering Assignment (Mathematics – II)

Section -1

	Unit 1- Functions and Limits
	1 marks questions
1	 (1) If a function f is defined as f: Z→Z, f(x) = x² - 3, then find the range of the function. (2) If a function f is defined as f: Z→Z, f(x) = x² + 3 then find the range of the function. (3) If a function f is defined as f: Z→Z, f(x) = 2x², then find the range of the function. (4) If a function f is defined as f: Z→Z, f(x) = 2x² + 1 then Find the range of the function. (5) If a function f is defined as f: Z→Z, f(x) = 3x² - 5 then find the range of the function. (6) If a function f is defined as f: Z→Z, f(x) = x² + 4, then find the range of the function. (7) If a function f is defined as f: Z→Z, f(x) = x² - 2, then find the range of the function. (8) If a function f is defined as f: Z→Z, f(x) = 3x², then find the range of the function. (9) If a function f is defined as f: Z→Z, f(x) = 3x², then find the range of the function. (10) If a function f is defined as f: Z→Z, f(x) = 2x² - 1, then find the range of the function. (11) If a function f is defined as f: Z→Z, f(x) = 3x² + 5, then find the range of the function.
2	Evaluate: (1) $\lim_{x\to 1} \frac{x^2+x-2}{x-1}$ (2) $\lim_{x\to 1} \frac{2x^2+2x-4}{x-1}$ (3) $\lim_{x\to 1} \frac{x^2-4x+3}{x^2+2x-3}$. (4) $\lim_{x\to 1} \frac{3x^2-12x+9}{x^2+2x-3}$. (5) $\lim_{x\to 1} \frac{x^2-6x+5}{2x^2-5x+3}$. (6) $\lim_{x\to 1} \frac{5x^2-30x+25}{2x^2-5x+3}$. (7) $\lim_{x\to 2} \frac{x^3-8}{x-2}$. (8) $\lim_{x\to -3} \frac{x^3+27}{x^2+5x+6}$. (9) $\lim_{x\to -3} \frac{4x^3+108}{x^2+5x+6}$. (10) $\lim_{x\to 2} \frac{x^3-x^2-5x+6}{x^2+5x+6}$ (11) $\lim_{x\to 1} \frac{x^2+x+2}{x+1}$ (12) $\lim_{x\to 1} \frac{2x^2+2x+4}{x+1}$ (13) $\lim_{x\to 1} \frac{(x-1)(x+2)}{x-1}$ (14) $\lim_{x\to 1} \frac{x^2-4x+3}{x^2+2x-3}$
3	 (i) If a function f is defined by f: R → R, f(x) = 3x + 6, find f⁻¹.)ii (If a function f is defined by f: R → R, f(x) = 2x + 10, find f⁻¹. (iii) If a function f is defined as f: Z→Z, f(x) = 4x⁴ + 8, find the range of the function. find f⁻¹. (iv) If a function f is defined by f: R → R, f(x) = 4x + 2, find f⁻¹.
4	(i) If $f(x) = 2x - 3$ and $g(x) = x^2 - x + 7$, then find the values of fog (1). (ii)) If $f(x) = 2x + 1$ and $g(x) = x^2 - 2$, then find the values of fog and gof.
5	If $f(x) = 2x$ and $g(x) = x^2 - 3x + 1$, then find the values of fog (4). 4 marks questions
6	(i) If $f(x) = e^x$, prove that $\Re f(x) = e^x$ (i) $f(x+y) = f(x) \cdot f(y)$ (ii) $f(x-y) = \frac{f(x)}{f(y)}$.
	(ii) If $f(x) = \log x$, prove that (a) $f(x) + f(y) = f(xy)$ (b) $f(x) - f(y) = f\left(\frac{x}{y}\right)$
	(iii) If $f(x) = e^{2x}$, prove that $\Re f(x) = e^x$ (i) $f(x+y) = f(x) \cdot f(y)$ (ii) $f(x-y) = f(x) \cdot f(y)$

	f(x)
_	$\frac{f(x)}{f(y)}$.
7	Evaluate: (i) $\lim_{n \to \infty} \left[\sqrt{n^2 + n + 1} - n \right]$ (ii) $\lim_{n \to \infty} \left[\sqrt{n^2 + n + 1} - \sqrt{n^2 + 1} \right]$
	(iii) $\lim_{x \to \infty} \sqrt{x} \left[\sqrt{x + p} - \sqrt{x} \right]$. (iv) $\lim_{x \to 2} \frac{x^3 - 6x^2 + 11x - 6}{x^3 - 8}$.
	(v) $\lim_{x \to -2} \frac{x^3 + 6x^2 + 11x + 6}{5x^2 + 10x}$. (vi) $\lim_{x \to \infty} \left[\sqrt{x^2 + 2x} - \sqrt{x^2 - 3} \right]$
	$5x^{2} + 10x $
	(vii) $\lim_{x \to -2} \frac{2x^3 + 12x^2 + 22x + 12}{15x^2 + 30x}$. (viii) $\lim_{x \to 2} \frac{x^4 - 8x^2 + 16}{x^3 - 3x^2 + 4}$. (ix) $\lim_{x \to 2} \frac{3x^4 - 24x^2 + 48}{x^3 - 3x^2 + 4}$. (x) $\lim_{x \to 1} \frac{2x^2 - 16x + 14}{7x^2 - 6x - 1}$.
	(ix) $\lim_{x \to 2} \frac{3x^{-24x^{-46}}}{x^3 - 3x^2 + 4}$. (x) $\lim_{x \to 1} \frac{2x^{-16x + 14}}{7x^2 - 6x - 1}$.
8	b+ax + b = b+ax + b = b+ax + b = b = b = b = b = b = b = b = b = b
	If $f(x) = \frac{b+ax}{bx+a}$, then prove that $f(x) \cdot f\left(\frac{1}{x}\right) = 1$
9	(A) If $f(x) = \frac{1-x}{1+x}$, prove that (i) $f(x) + f(\frac{1}{x}) = 0$. (ii) $f(x) - f(\frac{1}{x}) = 2f(x)$.
	$(iii) f(x) \cdot f(-x) = 1.$
	(B) If $f(y) = \frac{1+y}{1-y}$, prove that (i) $f(y) - f(\frac{1}{y}) = 2f(y)$. (ii) $f(y) \cdot f(-y) = 1$.
	(B) if $f(y) = \frac{1-y}{1-y}$, prove that (i) $f(y) = \frac{1}{y} = \frac{1}{y}$. (ii) $f(y) = \frac{1}{y} = \frac{1}{y}$.
	H : 2 P: C : 1
	Unit 2 Differentiation 1 marks questions
1	Differentiate the following with respect to 'x':
	(I) $y = e^x$ (II) $y = x^2 + e^x$ (III) $y = \sin x + \cos x$ (IV) $y = (\log x) - 3$
	$(V) y = \cos x - 6 \qquad (VI) y = \log x$
	(VII) $y = x^3 - 1$ VIII $(y = x^2)$
	(IX) $(y = x^3)$ $(X) y = 2x^4$
2	Find $\frac{dy}{dx}$
	$(i) y = 2 \log x$
	(ii) $y = \log x$ (iii) $y = x - 4$
	(iv) $y = \tan x$
	$(v) y = e^x$
	(vi) $y = x^2 - 3$
	$(vii) y = x^4 + 1$
	(viii) $y = \sin x$ (ix) $y = \cos x$
	x) $y = e^x \sin x$ (xi) $y = e^x \cos x$ (xii) $\frac{\ln x}{x}$ (xiii) $\frac{\ln x}{\cos x}$
	555

3	d^2v
	(i) Find $\frac{d^2y}{dx^2}$ if $y = x^3$
	(ii)) If $y = x + 1$ then find $\frac{d^2y}{dx^2}$
)iii (Find $\frac{d^2y}{dx^2}$ if $y = x^2$
	5 marks questions
4	Find $\frac{dy}{dx}$ if $x = at^2$ and $y = 2at$
5	If $y = 2e^{3x} + 3e^{-2x}$, then prove that $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$.
6	Using the definition of derivation find the derivative of (i) x^3 (ii) x^2
7	(i) If $y = \log \sin x^2$ then obtain $\frac{dy}{dx}$.
	(ii) Find $\frac{dy}{dx}$ where $y = \log \sin x + \log \cos x$.
	(iii) If $y = \log \cos x - \log \sin x + 1$ then find $\frac{dy}{dx}$.
	(iv) Obtain $\frac{dy}{dx}$ for , $y = x^3 \sin(\log x)$.
8	Differentiate the given terms with respect to x:
	(i) $y = e^x \cdot 3^x \cdot x^3$ (ii) $\frac{5}{x^3 - 3}$ (iii) $y = \log(\log x)$ (iv) $y = \left(x + \frac{2}{x + 3}\right) \left(\frac{2x - 1}{x^2 + 3x + 2}\right)$
	(v) $y = \cos(\sin x)$ (vi) $y = \sin x - \cos x - \log x$ (vi) $y = (3x - 4)^5$
	(vii) $y = \left(1 + \frac{1}{x}\right) \left(\frac{3x^2}{x^2 + 6x + 5}\right)$
9	(i) If the equation of motion of a particle is $: s = t^3 - 6t^2 + 9t + 6$, find its velocity
	(ii) If the equation of motion of a particle is : $s = 2t^3 + 6t^2 - 4t + 10$, find its velocity
)iii (If the equation of motion of a particle is: $s = t^3 + 2t^2 - 3t - 2$, find its velocity
	(iv) If the equation of motion of a particle is: $s = 2t^3 + 4t^2 - 8t - 3$, find its velocity
10	The equation of motion of a particle is $s = t^3 - 5t^2 + 3t + 1$, Find the time when the
	particle change its direction.
	Unit 3 Integration
	1 marks questions
1	Find) શોધો) (1) $\int x^2 dx$ (2) $\int 3x^3 dx$ (3) $\int 2x^2 dx$) (4) $\int (x^3 dx)$ (4) $\int x^2 dx$
	$(5) \int (1+2x)dx$
2	$(1) \int 1 dx = ? (2) \int e^x dx = ? (3) \int (1 - 2x) dx = ? (4) \int \frac{1}{x} dx = ? (5) \int (\sin x - 1) dx = ?$
	(6) $\int (e^x + 1) dx = ? (7) \int \cos x dx = ? (8) \int \sin x dx = ? (9) \int x^4 dx$ (10) $\int x^3 dx$

	$(11) \int x dx \ (12) \int 2 dx = ? \ (13) \int 3e^x dx = ? \ (14) \int \frac{2}{x} dx = ? \ (15) \int \sin x dx = ?$
3	Integrate the given function with respect to x, (1) $(\sin x + \cos x)$ (2) $3x^2 + 4x$
	(3) $(\sin x - \cos x)$ (4) $(\cos x - 1)$ (5) $\int (e^x + 2) dx$ (6) $\int (x^2 + 2x) dx$
4	Evaluate) 1) $(\int_2^5 (x^3) dx$ (2): $\int_1^3 (x^2) dx$ (3) $\int_2^3 (2x^4) dx$ (4) $\int_2^5 (x^2) dx$ (5) $\int_2^5 (x^4) dx$
	5 marks questions
5	Find the value of (1) $\int xe^x dx$ (2) $\int 3xe^x dx$ (3) $(\int_0^1 (4x^3 + 3x^2 + 2x + 1) dx$
	$(4) \int \left(4x^3 - \frac{1}{x} + \sin x - e^x\right) dx (5) \int \left(5x^2 - \frac{1}{x} + \sin x + 2e^x\right) dx$
	$(6) \int_0^1 (4x^3 + 3x^2 + 2x + 1) dx (7) \int \left(\frac{2+3\sin x}{\cos^2 x}\right) dx (8) \int_0^2 (3x^2 + 2x - 1) dx$
	(9) $\int_0^1 (x^3 + x^2 + x + 1) dx$ (10) $\int \left(x^3 - \frac{1}{x} + \cos x - e^x \right) dx$
	$(11) \int \left(3x^2 - \frac{1}{x} + 2\sin x + e^x\right) dx \ (12) \int (5x^3 + 4x^2 + 3x + 1) dx \ \ (13) \int x\cos x dx$
	$(14) \int \left(3x^2 + \frac{1}{x} - \sin x - e^x\right) dx \ (15) \ \int \left(\frac{4 + 6\sin x}{\cos^2 x}\right) dx$
6	Integrate the following with respect to x: $(1)3x^2 + 5x - 7$ $(2)3x^2 + 5x - 7$
	$(3)\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^{2} (4)\frac{x^{2} + 5x + 6}{x^{2} + 2x} (5)\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^{2} (6)\frac{x^{2} + 4x + 4}{x^{2} + 2x} (6)\frac{x^{2} + 7x + 6}{x^{2} + x} (7)\left(2\sqrt{x} + \frac{1}{2\sqrt{x}}\right)^{2}$
	$(8)\frac{x^2+8x+7}{x^2+7x}$
7	Evaluate 1) $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx$ (2) $\int \sqrt{1 + \sin 2x} dx$ (3) $\int (x - 3)^2 dx$ (4) $\int \sqrt{1 - \sin 2x} dx$
	$(5)\int (2x-3)^2dx$
8	Evaluate (1) $\int (3x-7)^9 dx$ (2) $\int (2x-7)^9 dx$
	$(3) \int \left(\frac{1-\cos 2x}{1+\cos 2x}\right) dx (4) \int \left(\frac{1+\cos 2x}{1-\cos 2x}\right) dx$
9	Evaluate (i) $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx$ (ii) $\int \cos(5x + 4) dx$
10	Evaluate (i) $\int \frac{1}{1+\sin x} dx$ (ii) $\int \sqrt{1-\sin 2x} dx$
	Section -2
	Unit-4 Differential Equations(First Order First Degree)

Question	Do as directed.
1	Find order and degree of the differential equation

	(2.3)
	i) $ \left(\frac{d^2y}{dx^2}\right)^3 + 3\left(\frac{dy}{dx}\right)^2 - 5y = 0 $
	ii) Solve: $\frac{dy}{dx} = x$
	iii) $solve y \frac{dx}{dy} = x^2$
	iv) Find Integrating Factor of $\frac{dy}{dx} + 5y = x^3$
	$y^2 \frac{dy}{dx} = x^2$
	$vi) \qquad \frac{dy}{dx} = y$
	$vii) \frac{dx}{dy} + \sin y = 0$
	viii) $x^{5} \left(\frac{d^{2}y}{dx^{2}}\right)^{4} + \left(\frac{dy}{dx}\right)^{2} + \frac{x}{y} \left(\frac{dy}{dx}\right)^{3} = 0$
	(un) y (un)
	$(\frac{d^2y}{dx^2})^3 + \sin\left(\frac{dy}{dx}\right)^2 = 0$
	$xi) \qquad \left(\frac{d^3y}{dx^3}\right)^3 + \sin\left(\frac{dy}{dx}\right) + 3y = 0$
2	i) Define the form of 1 st order linear differential equation
	ii) Define General solution of the differential equation.
3	iii) Define order of the differential equation. The degree of the homogeneous differential equation is
3	The degree of the homogenous differential equation is $\frac{dy}{dy} = x^3 + y^3$
	i) $\frac{dy}{dx} = \frac{x^3 + y^3}{x + y}$
	$ii) \qquad \frac{dy}{dx} = \frac{x^4 + y^4}{x + y}$
4	Solve the differential equation
	1) $\frac{dy}{dx} + \frac{y}{x} = x^2$.
	2) $x \left(\frac{dy}{dx}\right) = x + y$.
	3) $\frac{dy}{dx} = x^2 + 2x + 3$
	4) $y \frac{dy}{dx} = x^3 - 3x^2 + 7$
	ax
	5) Solve the differential equation(ડીફરન્શીયલ ઇક્વેશન ઉકેલો): $\frac{dy}{dx} + 3y = e^{2x}$ 6) 6) $x(1+y^2)dx - y(1+x^2)dy = 0$
	6) 6) $x(1+y^{2})dx - y(1+x^{2})dy = 0$ 7) $\frac{dy}{dx} + x^{2}e^{-y} = 0$.
	8) Solve the differential equation : $\frac{dy}{y} = (\tan x)dx$
5	y corve the unferential equation.
	(1) Verify that $y = cx + \frac{1}{c}$ is a solution of the differential equation
	$y\left(\frac{dy}{dx}\right) = x\left(\frac{dy}{dx}\right)^2 + 1$. Where C is arbitrary constant.
	(2) Verify that $y = e^x \sin x$ is the solution of differential equation
	$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0.$
	(3) Verify that $y = e^{ax} \sin bx$ is a solution of differential equations

	$\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$ (4) Verify that $y = e^{2x} \sin x$ is a solution of differential equations $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 0$.
6	Derive a differential equation for the family of line $y = mx + c$ (Where m and c are constant). Find the order and degree of the differential equation: $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^3 + \sin y = 0, \text{ Also Find Integrating Factor of } \frac{dy}{dx} - 2xy = \frac{1}{x}$ Derive a differential equation for the family of line $y = 2x + 3$

		Heit Commission work or
0	D 1'	Unit- 5 Complex number
Question	Do as dir	ectea .
1	Find the	principle argument of:
	i)	1+i.
	ii)	$1+\sqrt{3}i$.
	iii)	2+2i
	iv)	$2 + 2\sqrt{3}i$.
	v)	3 + 3i.
	vi)	$3 + 3\sqrt{3}i$.
	-	$\sqrt{3}+i$.
	viii)	$2\sqrt{3} + 2i$
	ix)	$3\sqrt{3} + 3i$
	x)	$4\sqrt{3} + 4i$
		5+5i
		$1-\sqrt{3}i$.
		3+3i
	_	11 + 11 <i>i</i>
		$2\sqrt{3} + 2i$.
2		modulus of the complex number.
	i)	$-3\sqrt{2}+3\sqrt{2}i$
	-	$\sqrt{2} + \sqrt{7}i$.
	iii)	$\sqrt{3}-\sqrt{6}i$.
	iv)	$1 + 2\sqrt{6}i$
	v)	$\sqrt{6} + \sqrt{2}i$.
	vi)	$\sqrt{5}-3\sqrt{2}i$
		$\sqrt{2} + \sqrt{6}i$.
	viii)	$2\sqrt{6}-3\sqrt{2}i$
	ix)	$\sqrt{6}-\sqrt{2}i$.

	$x) \qquad -4\sqrt{2} + 3\sqrt{2}i$
	xi) $\sqrt{5} - \sqrt{6}i$
	xii) $\sqrt{6} + \sqrt{7}i$
	xiii) $5 + 2\sqrt{6}i$
	$xiv) \qquad \sqrt{7} + \sqrt{8}i$
3	xv) $\sqrt{5} + 4\sqrt{2}i$ Express the following complex number in polar form:
3	i) $1+i$
	ii) $1-i$.
	iii) $1+\sqrt{3}i$
	iv) $3 + 3\sqrt{3}i$
	v) $2 + 2\sqrt{3}i$
	$vi) 2 + 2\sqrt{3}i$
	vii) 2-2i
	viii) $7 + 7\sqrt{3}i$
	ix) $\sqrt{3}-i$
4	Pieddheire en en elemente e
4	Find the inverse complex number of complex number $\frac{2+3i}{2}$
	$\frac{1}{4-3i}$
	ii) $3-4i$
	iii) $3+4i$
	iv) $1 + 3i$
	v) 5 + 3 <i>i</i> vi) 2+7i
	vi) 2+71 vii) 3+2i
	viii) 5+2i
	ix) 5-4i
	$X) \frac{1-3i}{4-3i}$
	$\begin{array}{ccc} 4-3i \\ xi & 3-5i \end{array}$
	xij $3-3ixii$) $8+3i$
	xiii) 2-7i
5	Simplify
	$(\cos 3\theta + i \sin 3\theta)^{-3} (\cos 12\theta + i \sin 12\theta)^4$ $(\cos 5\theta + i \sin 5\theta)^{-4} (\cos 3\theta + i \sin 3\theta)^4$
	$(1)\frac{(\cos 3\theta + i \sin 3\theta)^{-3} (\cos 12\theta + i \sin 12\theta)^{4}}{(\cos 3\theta + i \sin 3\theta)^{16} (\cos \theta - i \sin \theta)^{9}} \qquad (5)\frac{(\cos 5\theta + i \sin 5\theta)^{-4} (\cos 3\theta + i \sin 3\theta)^{4}}{(\cos 4\theta + i \sin 4\theta)^{3} (\cos 4\theta - i \sin 4\theta)^{5}}$
	$(2)\frac{(\cos 3\theta + i \sin 3\theta)^{-12} (\cos 12\theta + i \sin 12\theta)^4}{(\cos 3\theta + i \sin 3\theta)^{16} (\cos 6\theta - i \sin 6\theta)^6} \qquad (6)\frac{(\cos 2\theta + i \sin 2\theta)^3 (\cos 2\theta - i \sin 2\theta)^4}{(\cos 3\theta + i \sin 3\theta)^2 (\cos 4\theta + i \sin 4\theta)^{-2}}$
	$(\cos 3\theta + 1 \sin 3\theta)^{16} (\cos 6\theta - 1 \sin 6\theta)^6$ $(\cos 3\theta + 1 \sin 3\theta)^2 (\cos 4\theta + 1 \sin 4\theta)^{-2}$
	$(3)\frac{(\cos 3\theta + i \sin 3\theta)^{-3} (\cos 12\theta + i \sin 12\theta)^{4}}{(\cos 3\theta + i \sin 3\theta)^{16} (\cos \theta - i \sin \theta)^{9}} \qquad (7)\frac{(\cos 3\theta + i \sin 3\theta)^{4} (\cos 4\theta - i \sin 4\theta)^{5}}{(\cos 4\theta + i \sin 4\theta)^{3} (\cos 5\theta + i \sin 5\theta)^{-4}}$
	$(\cos 3\theta + i \sin 3\theta)^{16}(\cos \theta - i \sin \theta)^{9}$ $(\cos 4\theta + i \sin 4\theta)^{3}(\cos 5\theta + i \sin 5\theta)^{-4}$
	$(\cos 3\theta + i \sin 3\theta)^{-3} (\cos 3\theta + i \sin 3\theta)^4$ $(\cos 3\theta + i \sin 3\theta)^{-3} (\cos 11\theta + i \sin 11\theta)^4$
	$(4)\frac{(\cos 3\theta + i \sin 3\theta)^{-3} (\cos 3\theta + i \sin 3\theta)^{4}}{(\cos 4\theta + i \sin 4\theta)^{3} (\cos \theta - i \sin \theta)^{9}} $ $(8) \frac{(\cos 3\theta + i \sin 3\theta)^{-3} (\cos 11\theta + i \sin 11\theta)^{4}}{(\cos 4\theta + i \sin 4\theta)^{11} (\cos \theta - i \sin \theta)^{9}}$
	·

	$(\cos 3\theta + i \sin 3\theta)^{-4} (\cos 12\theta + i \sin 12\theta)^4$ $(\cos 5\theta + i \sin 5\theta)^{-3} (\cos 12\theta + i \sin 12\theta)^4$
	$(9)^{\frac{(\cos 3\theta + i \sin 3\theta)^{-4} (\cos 12\theta + i \sin 12\theta)^{4}}{(\cos 3\theta + i \sin 3\theta)^{16} (\cos 4\theta - i \sin 4\theta)^{3}}} (10)^{\frac{(\cos 5\theta + i \sin 5\theta)^{-3} (\cos 12\theta + i \sin 12\theta)^{4}}{(\cos 3\theta + i \sin 3\theta)^{16} (\cos \theta - i \sin \theta)^{15}}}$
	$(11)\frac{(\cos 3\theta + i \sin 3\theta)^{-3} (\cos 7\theta + i \sin 7\theta)^4}{(\cos 4\theta + i \sin 4\theta)^7 (\cos \theta - i \sin \theta)^9} \qquad (11)\frac{(\cos 5\theta + i \sin 5\theta)^{-4} (\cos 2\theta + i \sin 2\theta)^4}{(\cos 4\theta + i \sin 4\theta)^2 (\cos 4\theta - i \sin 4\theta)^5}$
	$(12)\frac{(\cos 5\theta + i\sin 5\theta)^3(\cos 2\theta - i\sin 2\theta)^4}{(\cos 3\theta + i\sin 3\theta)^5(\cos 4\theta + i\sin 4\theta)^{-2}}$
6	Find the conjugate complex number and moduli of the complex number $\frac{1+i}{1-4i}$.
	Find the conjugate complex number and moduli of the complex number : $\frac{4+i}{2-3i}$.
	Find the conjugate complex number and moduli of the complex number $\frac{4-i}{2+3i}$.
	Find the conjugate complex number and moduli of the complex number $\frac{5+i}{2+3i}$.
	Find the conjugate complex number and moduli of the complex number $\frac{2-i}{1+3i}$
	Find the conjugate complex number and moduli of the complex number $\frac{2+i}{3+4i}$
	Find the conjugate complex number and moduli of the complex number $\frac{1-i}{1-4i}$
	Find the conjugate complex number and moduli of the complex number $\frac{2-8i}{1+i}$
	Unit-6 STATISTICS
Question	Do as directed.
1	Find the median for the observation
	i) 3,5,2,6,5
	ii) 4,1,-2,0,1,2 iii) -3,7,9,5,7,8,2
	iv) 18,12,27,35,26,21,16,24
	v) 8,3,5,12,9,14,17,1,7
2	(I) Find the mode for the observation 3,2,6,5,7,3,8,10,3,14
	(I) Find the mode for the observation 3,5,2,6,5
	(I) Find the mode for the observation 4,1,-2,0,1,2
3	(I) What is mean of the first five even natural number?
	(II) What is mean of the first five odd natural number?
	(III) What is mean of the first five prime number?
	(IV) What is mean of the first six multiple of five?
	(I) What is mean of the first 6 prime number?
	(II) What is mean of the first four prime number?(I) What is mean of the first seven even natural number?
	(I) What is mean of the first seven even natural number?
4	Find the mean for the observation
	(I) 4,1,-2,0,1,2
	(II) -2,-1,-1,1,2,4
	(III) 3,5,2,6,5

	(IV) -:	3,7,9,	5,7,8,2	2													
5	The divident			_				_		s in	the	year	2011	201	l2 are	show	vn in
	Dividend (10			15	18	20	_	22	25					
	No. of com	_		7			12	6	12		8	5					
6	Find the me	edian	of the	e foll	owing	g dat	a										
	X	2	5	6	8	10	12	2									
	F	2	8	10	7	8	3										
7	The following mean.	ng ta	ble sh	ows	the n	umb	er o	f chil	dren	per	r fa	mily.	Using	the o	lata, f	ind th	ie
	Number of children	0	1	2	3	4	5										
	Number of families	6	40	30	16	6	2										
8	Find the mo	edian	of th	e fre	quen	cy di	strib	utio	n giv	en i	n t	he fol	lowin	ig tab	le.		
	Marks	30- 40	40- 50	- 50 60		60- '0	70- 80	9	80-	90- 100							
	Number of students	3	7	1	12	15	8	3		2							
9	Find the me	dian	of the	e foll	owing	g free	quen	ıcy d	istril	outi	on.	ı					
	$\begin{bmatrix} x_i & 0 \\ f_i & 4 \end{bmatrix}$	1 1	2	3 11	4 3												
10	The following			1		narks	s (ou	ıt of !	50) c	bta	ine	d by	100 s	tuden	ts in	an apt	itude
	test. Calcula	ite th	e mea	an of	the g	iven	freq	uenc	y dis	strik	out	ion.					
	Marks	21-			31-	36		41	-	46-							
		25	30		35	40		45		50							
	Number of students	8	10)	24	30)	12		16							
11	The following mean.	ng ta	ble sh	iows	the n	umb	er o	f chil	dren	pei	r fa	mily.	Using	g the c	lata, f	ind th	ie
	Number of shildren	0	1	2	3	4	5										
	children Number	3	20	15	8	3	1	\dashv									
	Mullibel	J	40	τJ	U	J	1										

of				
01		1		
families				
lailliles				