# Uka Tarsadia University (Diwaliba Polytechnic) Diploma in Chemical Engineering <br> Assignment (Mathematics - II) 

## Section -1

|  | Unit 1- Functions and Limits |
| :---: | :---: |
|  | 1 marks questions |
| 1 | (1)If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=x^{2}-3$, then find the range of the function. <br> (2) If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=x^{2}+3$ then find the range of the function. <br> (3) If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=2 x^{2}$, then find the range of the function. <br> (4) If a function $f$ is defined as $f: Z \rightarrow Z, f(x)=2 x^{2}+1$ then Find the range of the function. <br> (5) If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=3 x^{2}-5$ then find the range of the function. <br> (6) If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=x^{2}+4$, then find the range of the function <br> (7)If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=x^{2}-2$, then find the range of the function. <br> (8)If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=x^{2}+2$, then find the range of the function. <br> (9) If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=3 x^{2}$, then find the range of the function. <br> (10)If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=2 x^{2}-1$, then find the range of the function. <br> (11)If a function f is defined as $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x})=2 x+6$, then find the range of the function. <br> (12)If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=3 x^{2}+5$, then find the range of the function. |
| 2 | Evaluate: (1) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}$ <br> (2) $\lim _{x \rightarrow 1} \frac{2 x^{2}+2 x-4}{x-1}$ <br> (3) $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}+2 x-3}$. <br> (4) $\lim _{x \rightarrow 1} \frac{3 x^{2}-12 x+9}{x^{2}+2 x-3}$. <br> (5) $\lim _{x \rightarrow 1} \frac{x^{2}-6 x+5}{2 x^{2}-5 x+3}$. <br> (6) $\lim _{x \rightarrow 1} \frac{5 x^{2}-30 x+25}{2 x^{2}-5 x+3}$. <br> (7) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$. <br> (8) $\lim _{x \rightarrow-3} \frac{x^{3}+27}{x^{2}+5 x+6}$. <br> (9) $\lim _{x \rightarrow-3} \frac{4 x^{3}+108}{x^{2}+5 x+6}$. <br> (10) $\lim _{x \rightarrow 2} \frac{x^{3}-x^{2}-5 x+6}{x^{2}+5 x+6}$ <br> (11) $\lim _{x \rightarrow 1} \frac{x^{2}+x+2}{x+1}$ <br> (12) $\lim _{x \rightarrow 1} \frac{2 x^{2}+2 x+4}{x+1}$ <br> (13) $\lim _{x \rightarrow 1} \frac{(x-1)(x+2)}{x-1}$ <br> (14) $\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x^{2}+2 x-3}$ |
| 3 | (i)If a function $f$ is defined by $f: R \rightarrow R, f(x)=3 x+6$, find $f^{-1}$. <br> )ii (If a function $f$ is defined by $f: R \rightarrow R, f(x)=2 x+10$, find $f^{-1}$. <br> (iii) If a function f is defined as $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}, \mathrm{f}(\mathrm{x})=4 x^{4}+8$, find the range of the function. find $f^{-1}$. <br> (iv) If a function $f$ is defined by $f: R \rightarrow R, f(x)=4 x+2$, find $f^{-1}$. |
| 4 | (i)If $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-3$ and $\mathrm{g}(\mathrm{x})=x^{2}-x+7$, then find the values of fog (1). <br> (ii) ) If $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=x^{2}-2$, then find the values of fog and gof. |
| 5 | If $\mathrm{f}(\mathrm{x})=2 x$ and $\mathrm{g}(\mathrm{x})=x^{2}-3 x+1$, then find the values of fog (4). |
|  | 4 marks questions |
| 6 | (i) If $f(x)=e^{x}$, prove that बोا $(\mathrm{x})=e^{x}$ <br> (i) $f(x+y)=f(x) \cdot f(y)$ (ii) $f(x-y)=\frac{f(x)}{f(y)}$. <br> (ii) If $f(x)=\log x$, prove that (a) $f(x)+f(y)=f(x y)$ <br> (b) $f(x)-f(y)=f\left(\frac{x}{y}\right)$ <br> (iii) ) If $f(x)=e^{2 x}$, prove that नोो $(\mathrm{x})=e^{x}$ <br> (i) $f(x+y)=f(x) \cdot f(y)$ (ii) $f(x-y)=$ |


|  | $\frac{f(x)}{f(y)} .$ |
| :---: | :---: |
| 7 | Evaluate: (i) $\lim _{n \rightarrow \infty}\left[\sqrt{n^{2}+n+1}-n\right]$ <br> (ii) $\lim _{n \rightarrow \infty}\left[\sqrt{n^{2}+n+1}-\sqrt{n^{2}+1}\right]$ <br> (iii) $\lim _{x \rightarrow \infty} \sqrt{x}[\sqrt{x+p}-\sqrt{x}]$. <br> (iv) $\lim _{x \rightarrow 2} \frac{x^{3}-6 x^{2}+11 x-6}{x^{3}-8}$. <br> (v) $\lim _{x \rightarrow-2} \frac{x^{3}+6 x^{2}+11 x+6}{5 x^{2}+10 x}$. <br> (vi) $\lim _{x \rightarrow \infty}\left[\sqrt{x^{2}+2 x}-\sqrt{x^{2}-3}\right]$ <br> (vii) $\lim _{x \rightarrow-2} \frac{2 x^{3}+12 x^{2}+22 x+12}{15 x^{2}+30 x}$. <br> (viii) $\lim _{x \rightarrow 2} \frac{x^{4}-8 x^{2}+16}{x^{3}-3 x^{2}+4}$. <br> (ix) $\lim _{x \rightarrow 2} \frac{3 x^{4}-24 x^{2}+48}{x^{3}-3 x^{2}+4}$. <br> (x) $\lim _{x \rightarrow 1} \frac{2 x^{2}-16 x+14}{7 x^{2}-6 x-1}$. |
| 8 | If $f(x)=\frac{b+a x}{b x+a}$, then prove that $f(x) \cdot f\left(\frac{1}{x}\right)=1$ |
| 9 | (A) If $f(x)=\frac{1-x}{1+x}$, prove that (i) <br> $f(x)+f\left(\frac{1}{x}\right)=0$. <br> (ii) $f(x)-f\left(\frac{1}{x}\right)=2 f(x)$. <br> (iii) $f(x) \cdot f(-x)=1$. <br> (B)If $f(y)=\frac{1+y}{1-y}$, prove that <br> (i) $f(y)-f\left(\frac{1}{y}\right)=2 f(y)$. <br> (ii) $f(y) \cdot f(-y)=1$. |
|  | Unit 2 Differentiation |
|  | 1 marks questions |
| 1 | Differentiate the following with respect to ' $x$ ': <br> (I) $y=e^{x}$ <br> (II) $y=x^{2}+e^{x}$ <br> (III) $y=\sin x+\cos x$ <br> (IV) $y=(\log x)-3$ <br> (V) $y=\cos x-6$ <br> (VI) $y=\log x$ <br> (VII) $y=x^{3}-1$ <br> VIII $\left(y=x^{2}\right.$ <br> (IX) $\quad\left(y=x^{3}\right.$ <br> (X) $y=2 x^{4}$ |
| 2 | Find $\frac{d y}{d x}$ <br> (i) $y=2 \log x$ <br> (ii) $y=\log x$ <br> (iii) $y=x-4$ <br> (iv) $y=\tan x$ <br> (v) $y=e^{x}$ <br> (vi) $y=x^{2}-3$ <br> (vii) $y=x^{4}+1$ <br> (viii) $y=\sin x$ (ix) $y=\cos x$ <br> x) $y=e^{x} \sin x$ (xi) $y=e^{x} \cos x$ (xii) $\frac{\ln x}{x}$ (xiii) $\frac{\ln x}{\cos x}$ |


| 3 | (i)Find $\frac{d^{2} y}{d x^{2}}$ if $\mathrm{y}=x^{3}$ <br> (ii)) If $y=x+1$ then find $\frac{d^{2} y}{d x^{2}}$ <br> )iii (Find $\frac{d^{2} y}{d x^{2}}$ if $y=x^{2}$ |
| :---: | :---: |
|  | 5 marks questions |
| 4 | Find $\frac{d y}{d x}$ if $x=a t^{2}$ and $y=2 a t$ |
| 5 | If $y=2 e^{3 x}+3 e^{-2 x}$, then prove that $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-6 y=0$. |
| 6 | Using the definition of derivation find the derivative of (i) $x^{3}$ (ii) $x^{2}$ |
| 7 | (i)If $y=\log \sin x^{2}$ then obtain $\frac{d y}{d x}$. <br> (ii) Find $\frac{d y}{d x}$ where $y=\log \sin x+\log \cos x$. <br> (iii) If $y=\log \cos x-\log \sin x+1$ then find $\frac{d y}{d x}$. <br> (iv) Obtain $\frac{d y}{d x}$ for , $y=x^{3} \sin (\log x)$. |
| 8 | Differentiate the given terms with respect to x : <br> (i) $y=e^{x} \cdot 3^{x} \cdot x^{3}$ <br> (ii) $\frac{5}{x^{3}-3}$ <br> (iii) $y=\log (\log x)$ <br> (iv) $y=\left(x+\frac{2}{x+3}\right)\left(\frac{2 x-1}{x^{2}+3 x+2}\right)$ <br> (v) $y=\cos (\sin x)$ <br> (vi) $y=\sin x-\cos x-\log x$ <br> (vi) ) $y=(3 x-4)^{5}$ <br> (vii) $y=\left(1+\frac{1}{x}\right)\left(\frac{3 x^{2}}{x^{2}+6 x+5}\right)$ |
| 9 | (i)If the equation of motion of a particle is $: s=t^{3}-6 t^{2}+9 t+6$, find its velocity <br> (ii) If the equation of motion of a particle is: $s=2 t^{3}+6 t^{2}-4 t+10$, find its velocity <br> ) iii (If the equation of motion of a particle is: $s=t^{3}+2 t^{2}-3 t-2$, find its velocity <br> (iv) If the equation of motion of a particle is: $s=2 t^{3}+4 t^{2}-8 t-3$, find its velocity |
| 10 | The equation of motion of a particle is $s=t^{3}-5 t^{2}+3 t+1$, Find the time when the particle change its direction. |
|  | Unit 3 Integration |
|  | 1 marks questions |
| 1 | Find) શोधો) <br> (1) $\int x^{2} d x$ <br> (2) $\int 3 x^{3} d x$ <br> (3) $\int 2 x^{2} d x$ ) <br> (4) $\int\left(x^{3} d x\right)$ <br> (4) $\int x^{2} d x$ <br> (5) $\int(1+2 x) d x$ |
| 2 | (1) $\int 1 d x=$ ? <br> (2) $\int e^{x} d x=$ ? <br> (3) $\int(1-2 x) d x=$ ? <br> (4) $\int \frac{1}{x} d x=$ ? <br> (5) $\int(\sin x-1) d x=$ ? <br> (6) $\int\left(e^{x}+1\right) d x=$ ? <br> (7) $\int \cos x d x=$ ? <br> (8) $\int \sin x d x=$ ? <br> (9) $\int x^{4} d x$ <br> (10) $\int x^{3} d x$ |


|  | (11) $\int x d x$ (12) $\int 2 \mathrm{dx}=$ ? (13) $\int 3 \mathrm{e}^{\mathrm{x}} \mathrm{dx}=$ ? (14) $\int \frac{2}{x} d x=$ ? (15) $\int \sin x d x=$ ? |
| :---: | :---: |
| 3 | Integrate the given function with respect to x , (1) $(\sin x+\cos x)$ (2) $3 x^{2}+4 x$ <br> (3) $(\sin x-\cos x)$ <br> $(4)(\cos x-1)$ <br> (5) $\int\left(e^{x}+2\right) d x(6) \int\left(x^{2}+2 x\right) d x$ |
| 4 | Evaluate) 1) ( $\int_{2}^{5}\left(x^{3}\right) \mathrm{dx}$ (2) : $\int_{1}^{3}\left(x^{2}\right) \mathrm{dx} \quad$ (3) $\int_{2}^{3}\left(2 x^{4}\right) \mathrm{dx} \quad(4) \int_{2}^{5}\left(x^{2}\right) \mathrm{dx} \quad(5) \int_{2}^{5}\left(x^{4}\right) \mathrm{dx}$ |
|  | 5 marks questions |
| 5 | Find the value of (1) $\int x e^{x} d x$ (2) $\int 3 x e^{x} d x$ (3) $\left(\int_{0}^{1}\left(4 x^{3}+3 x^{2}+2 x+1\right) d x\right.$ <br> (4) $\int\left(4 x^{3}-\frac{1}{x}+\sin x-e^{x}\right) d x$ <br> (5) $\int\left(5 x^{2}-\frac{1}{x}+\sin x+2 e^{x}\right) d x$ <br> (6) $\int_{0}^{1}\left(4 x^{3}+3 x^{2}+2 x+1\right) d x$ <br> (7) $\int\left(\frac{2+3 \sin x}{\cos ^{2} x}\right) d x$ <br> (8) $\int_{0}^{2}\left(3 x^{2}+2 x-1\right) d x$ <br> (9) $\int_{0}^{1}\left(x^{3}+x^{2}+x+1\right) d x$ <br> (10) $\int\left(x^{3}-\frac{1}{x}+\cos x-e^{x}\right) d x$ <br> (11) $\int\left(3 x^{2}-\frac{1}{x}+2 \sin x+e^{x}\right) d x$ <br> (12) $\int\left(5 x^{3}+4 x^{2}+3 x+1\right) d x$ <br> (13) $\int x \cos x d x$ <br> (14) $\int\left(3 x^{2}+\frac{1}{x}-\sin x-e^{x}\right) d x$ <br> (15) $\int\left(\frac{4+6 \sin x}{\cos ^{2} x}\right) d x$ |
| 6 | Integrate the following with respect to x : <br> (1) $3 x^{2}+5 x-7$ <br> (2) $3 x^{2}+5 x-7$ <br> (3) $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}$ <br> (4) $\frac{x^{2}+5 x+6}{x^{2}+2 x}$ <br> (5) $\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}$ <br> (6) $\frac{x^{2}+4 x+4}{x^{2}+2 x}$ <br> (6) $\frac{x^{2}+7 x+6}{x^{2}+x}$ <br> (7) $\left(2 \sqrt{x}+\frac{1}{2 \sqrt{x}}\right)^{2}$ <br> (8) $\frac{x^{2}+8 x+7}{x^{2}+7 x}$ |
| 7 | Evaluate 1) $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2} d x(2) \int \sqrt{1+\sin 2 x} d x(3) \int(x-3)^{2} d x(4) \int \sqrt{1-\sin 2 x} d x$ <br> (5) $\int(2 x-3)^{2} d x$ |
| 8 | Evaluate (1) $\int(3 x-7)^{9} d x$ (2) $\int(2 x-7)^{9} d x$ <br> (3) $\int\left(\frac{1-\cos 2 x}{1+\cos 2 x}\right) d x$ <br> (4) $\int\left(\frac{1+\cos 2 x}{1-\cos 2 x}\right) d x$ |
| 9 | Evaluate (i) $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2} d x$ (ii) $\int \cos (5 x+4) d x$ |
| 10 | Evaluate (i) $\int \frac{1}{1+\sin x} d x$ (ii) $\int \sqrt{1-\sin 2 x} d x$ |
|  | Section -2 Unit-4 Differential Equations(First Order First Degree) |
| Question | Do as directed. |
| 1 | Find order and degree of the differential equation |


|  | i) $\quad\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+3\left(\frac{d y}{d x}\right)^{2}-5 y=0$ <br> ii) Solve : $\frac{d y}{d x}=x$ <br> iii) solve $y \frac{d y}{d x}=x^{2}$ <br> iv) Find Integrating Factor of $\frac{d y}{d x}+5 y=x^{3}$ <br> v) $y^{2} \frac{d y}{d x}=x^{2}$ <br> vi) $\frac{d y}{d x}=y$ <br> vii) $\frac{d y}{d x}+\sin y=0$ <br> viii) $\quad x^{5}\left(\frac{d^{2} y}{d x^{2}}\right)^{4}+\left(\frac{d y}{d x}\right)^{2}+\frac{x}{y}\left(\frac{d y}{d x}\right)^{3}=0$ <br> ix) $\quad\left(\frac{d y}{d x}\right)^{2}+\frac{x}{y}\left(\frac{d y}{d x}\right)=0$ <br> x) $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\sin \left(\frac{d y}{d x}\right)^{2}=0$ <br> xi) $\left(\frac{d^{3} y}{d x^{3}}\right)^{3}+\sin \left(\frac{d y}{d x}\right)+3 y=0$ |
| :---: | :---: |
| 2 | i) Define the form of $1^{\text {st }}$ order linear differential equation <br> ii) Define General solution of the differential equation. <br> iii) Define order of the differential equation. |
| 3 | The degree of the homogenous differential equation is <br> i) $\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x+y}$ <br> ii) $\frac{d y}{d x}=\frac{x^{4}+y^{4}}{x+y}$ |
| 4 | Solve the differential equation <br> 1) $\frac{d y}{d x}+\frac{y}{x}=x^{2}$. <br> 2) $x\left(\frac{d y}{d x}\right)=x+y$. <br> 3) $\frac{d y}{d x}=x^{2}+2 x+3$ <br> 4) $y \frac{d y}{d x}=x^{3}-3 x^{2}+7$ <br> 5) Solve the differential equation(ડીફર્શીીયલ ઈકવેશન ઉકલો): $\frac{d y}{d x}+3 y=e^{2 x}$ <br> 6) 6) $x\left(1+y^{2}\right) d x-y\left(1+x^{2}\right) d y=0$ <br> 7) $\frac{d y}{d x}+x^{2} e^{-y}=0$. <br> 8) Solve the differential equation $: \frac{d y}{y}=(\tan x) d x$ |
| 5 | (1) Verify that $y=c x+\frac{1}{c}$ is a solution of the differential equation $y\left(\frac{d y}{d x}\right)=x\left(\frac{d y}{d x}\right)^{2}+1$. Where C is arbitrary constant. <br> (2)Verify that $y=e^{x} \sin x$ is the solution of differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$. <br> (3)Verify that $y=e^{a x} \sin b x$ is a solution of differential equations |


|  | $\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0$ <br> (4)Verify that $y=e^{2 x} \sin x$ is a solution of differential equations $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+5 y=0$. |
| :---: | :---: |
| 6 | Derive a differential equation for the family of line $y=m x+c$ (Where $m$ and $c$ are constant). <br> Find the order and degree of the differential equation: $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{3}+\sin y=0 \text {, Also Find Integrating Factor of }$ $\frac{d y}{d x}-2 x y=\frac{1}{x}$ <br> Derive a differential equation for the family of line $y=2 x+3$ |
|  | Unit-5 Complex number |
| Question | Do as directed. |
| 1 | Find the principle argument of : <br> i) $1+i$. <br> ii) $\quad 1+\sqrt{3} i$. <br> iii) $2+2 i$ <br> iv) $2+2 \sqrt{3} i$. <br> v) $3+3 i$. <br> vi) $3+3 \sqrt{3} i$. <br> vii) $\quad \sqrt{3}+i$. <br> viii) $2 \sqrt{3}+2 \mathrm{i}$ <br> ix) $3 \sqrt{3}+3 i$ <br> x) $4 \sqrt{3}+4 i$ <br> xi) $\quad 5+5 i$ <br> xii) $1-\sqrt{3} i$. <br> xiii) $3+3 i$ <br> xiv) $11+11 i$ <br> xv) $2 \sqrt{3}+2 i$. |
| 2 | Find the modulus of the complex number. <br> i) $\quad-3 \sqrt{2}+3 \sqrt{2} i$ <br> ii) $\quad \sqrt{2}+\sqrt{7} i$. <br> iii) $\sqrt{3}-\sqrt{6} i$. <br> iv) $1+2 \sqrt{6} i$ <br> v) $\sqrt{6}+\sqrt{2} i$. <br> vi) $\sqrt{5}-3 \sqrt{2} i$ <br> vii) $\sqrt{2}+\sqrt{6} i$. <br> viii) $2 \sqrt{6}-3 \sqrt{2} i$ <br> ix) $\sqrt{6}-\sqrt{2} i$. |


|  | x) $-4 \sqrt{2}+3 \sqrt{2} i$ <br> xi) $\sqrt{5}-\sqrt{6} i$ <br> xii) $\sqrt{6}+\sqrt{7} i$ <br> xiii) $5+2 \sqrt{6} i$ <br> xiv) $\sqrt{7}+\sqrt{8} i$ <br> xv) $\sqrt{5}+4 \sqrt{2} i$ |
| :---: | :---: |
| 3 | Express the following complex number in polar form: <br> i) $1+i$ <br> ii) $1-i$. <br> iii) $1+\sqrt{3} i$ <br> iv) $3+3 \sqrt{3} i$ <br> v) $2+2 \sqrt{3} i$ <br> vi) $2+2 \sqrt{3} i$ <br> vii) $2-2 \mathrm{i}$ <br> viii) $7+7 \sqrt{3} i$ <br> ix) $\sqrt{3}-i$ |
| 4 | Find the inverse complex number of complex number <br> i) $\frac{2+3 i}{4-3 i}$ <br> ii) $3-4 i$ <br> iii) $3+4 i$ <br> iv) $1+3 i$ <br> v) $5+3 i$ <br> vi) $2+7 i$ <br> vii) $3+2 \mathrm{i}$ <br> viii) $5+2 \mathrm{i}$ <br> ix) $\quad 5-4 \mathrm{i}$ <br> x) $\frac{1-3 i}{4-3 i}$ <br> xi) $3-5 i$ <br> xii) $8+3 i$ <br> xiii) $2-7 \mathrm{i}$ |
| 5 | Simplify <br> (1) $\frac{(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{-3}(\cos 12 \theta+\mathrm{i} \sin 12 \theta)^{4}}{(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{16}(\cos \theta-\mathrm{i} \sin \theta)^{9}}$ <br> (5) $\frac{(\cos 5 \theta+i \sin 5 \theta)^{-4}(\cos 3 \theta+i \sin 3 \theta)^{4}}{(\cos 4 \theta+i \sin 4 \theta)^{3}(\cos 4 \theta-i \sin 4 \theta)^{5}}$ <br> (2) $\frac{(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{-12}(\cos 12 \theta+\mathrm{i} \sin 12 \theta)^{4}}{(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{16}(\cos 6 \theta-\mathrm{i} \sin 6 \theta)^{6}}$ <br> (6) $\frac{(\cos 2 \theta+i \sin 2 \theta)^{3}(\cos 2 \theta-\mathrm{i} \sin 2 \theta)^{4}}{(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{2}(\cos 4 \theta+\mathrm{i} \sin 4 \theta)^{-2}}$ <br> (3) $\frac{(\cos 3 \theta+i \sin 3 \theta)^{-3}(\cos 12 \theta+i \sin 12 \theta)^{4}}{(\cos 3 \theta+i \sin 3 \theta)^{16}(\cos \theta-i \sin \theta)^{9}}$ <br> (7) $\frac{(\cos 3 \theta+i \sin 3 \theta)^{4}(\cos 4 \theta-\mathrm{i} \sin 4 \theta)^{5}}{(\cos 4 \theta+\mathrm{i} \sin 4 \theta)^{3}(\cos 5 \theta+\mathrm{i} \sin 5 \theta)^{-4}}$ <br> (4) $\frac{(\cos 3 \theta+i \sin 3 \theta)^{-3}(\cos 3 \theta+i \sin 3 \theta)^{4}}{(\cos 4 \theta+i \sin 4 \theta)^{3}(\cos \theta-i \sin \theta)^{9}}$ <br> (8) $\frac{(\cos 3 \theta+i \sin 3 \theta)^{-3}(\cos 11 \theta+i \sin 11 \theta)^{4}}{(\cos 4 \theta+i \sin 4 \theta)^{11}(\cos \theta-i \sin \theta)^{9}}$ |


|  | (9) $\frac{(\cos 3 \theta+i \sin 3 \theta)^{-4}(\cos 12 \theta+i \sin 12 \theta)^{4}}{(\cos 3 \theta+i \sin 3 \theta)^{16}(\cos 4 \theta-i \sin 4 \theta)^{3}}$ <br> (10) $\frac{(\cos 5 \theta+i \sin 5 \theta)^{-3}(\cos 12 \theta+i \sin 12 \theta)^{4}}{(\cos 3 \theta+i \sin 3 \theta)^{16}(\cos \theta-i \sin \theta)^{15}}$ <br> (11) $\frac{(\cos 3 \theta+i \sin 3 \theta)^{-3}(\cos 7 \theta+i \sin 7 \theta)^{4}}{(\cos 4 \theta+i \sin 4 \theta)^{7}(\cos \theta-i \sin \theta)^{9}}$ <br> (11) $\frac{(\cos 5 \theta+i \sin 5 \theta)^{-4}(\cos 2 \theta+i \sin 2 \theta)^{4}}{(\cos 4 \theta+i \sin 4 \theta)^{2}(\cos 4 \theta-i \sin 4 \theta)^{5}}$ <br> (12) $\frac{(\cos 5 \theta+i \sin 5 \theta)^{3}(\cos 2 \theta-i \sin 2 \theta)^{4}}{(\cos 3 \theta+i \sin 3 \theta)^{5}(\cos 4 \theta+i \sin 4 \theta)^{-2}}$ |
| :---: | :---: |
| 6 | Find the conjugate complex number and moduli of the complex number $\frac{1+i}{1-4 i}$. Find the conjugate complex number and moduli of the complex number $: \frac{4+i}{2-3 i}$. Find the conjugate complex number and moduli of the complex number $\frac{4-i}{2+3 i}$. Find the conjugate complex number and moduli of the complex number $\frac{5+i}{2+3 i}$. Find the conjugate complex number and moduli of the complex number $\frac{2-i}{1+3 i}$ Find the conjugate complex number and moduli of the complex number $\frac{2+i}{3+4 i}$ Find the conjugate complex number and moduli of the complex number $\frac{1-i}{1-4 i}$ Find the conjugate complex number and moduli of the complex number $\frac{2-8 i}{1+i}$ |
|  | Unit-6 STATISTICS |
| Question | Do as directed. |
| 1 | Find the median for the observation <br> i) $3,5,2,6,5$ <br> ii) $4,1,-2,0,1,2$ <br> iii) $-3,7,9,5,7,8,2$ <br> iv) $18,12,27,35,26,21,16,24$ <br> v) $8,3,5,12,9,14,17,1,7$ |
| 2 | (I) Find the mode for the observation 3,2,6,5,7,3,8,10,3,14 (I) Find the mode for the observation 3,5,2,6,5 (I) Find the mode for the observation 4,1,-2,0,1,2 |
| 3 | (I) What is mean of the first five even natural number? (II) What is mean of the first five odd natural number? (III) What is mean of the first five prime number? (IV) What is mean of the first six multiple of five? (I) What is mean of the first 6 prime number? (II) What is mean of the first four prime number? (I) What is mean of the first seven even natural number? |
| 4 | Find the mean for the observation <br> (I) $4,1,-2,0,1,2$ <br> (II) $-2,-1,-1,1,2,4$ <br> (III) $3,5,2,6,5$ |



|  | of <br> families |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

